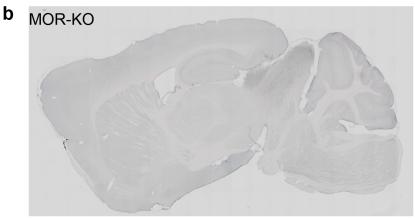
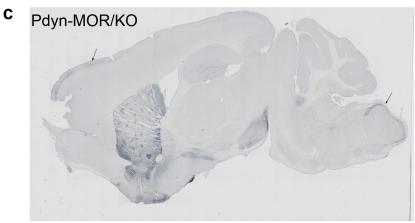
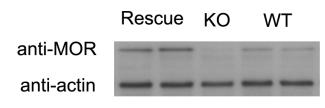


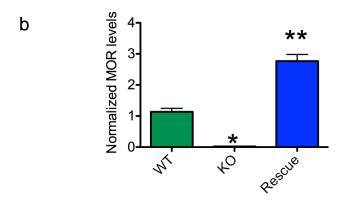
Cui et al. SUPPLEMENATRY MATERIALS

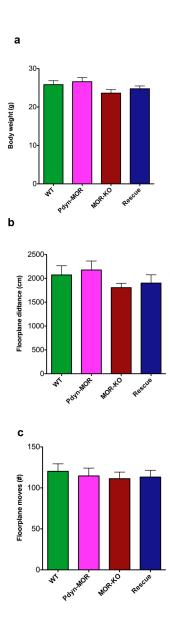


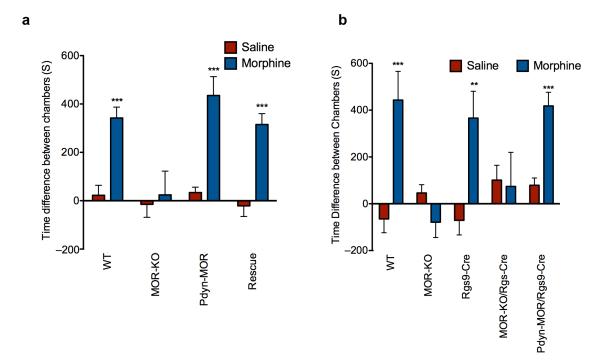

Supplementary Figure S1. Immunohistochemical staining of MOR in *Drd1-GFP* and *Drd2-GFP* mice. (a-c) A representative double immunofluorescence staining shows the expression pattern of MOR (red, b, c) and GFP (green, a,c) in the GENSAT *Drd1-GFP* mouse brain. Scale bar = 50 μm. (d-f) A representative double immunofluorescence staining shows the expression pattern on of MOR (red, e and f) and GFP (green, d and f) the GENSAT *Drd2-GFP* mouse brain. Scale bar = 50 μm. (g-i) A representative double immunofluorescence staining shows the co-localization of MOR (red, b, c) and GFP (green, a,c) in the GENSAT *Drd1-GFP* mouse brain. Scale bar = 20 μm. (j-l) A representative double immunofluorescence staining shows the co-localization of MOR (red, e and f) and GFP (green, d and f) the GENSAT *Drd2-GFP* mouse brain. Scale bar = 20 μm.

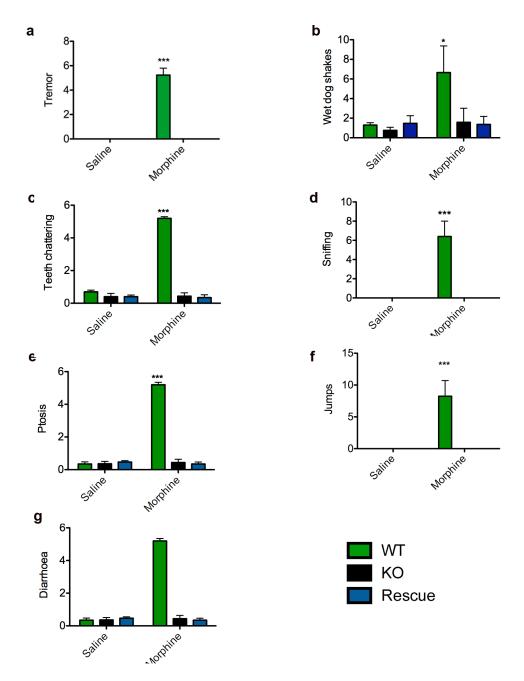
Supplementary Figure S2. A example of FACS sorting of the GFP positive but propidium iodide negative neurons from WT (used as negative control) and *Pdyn-GFP* mice. Same gating was used for the *Drd2-GFP* mice. Green dots within the selected area represents the GFP⁺/propidium iodide⁻ cells been collected.

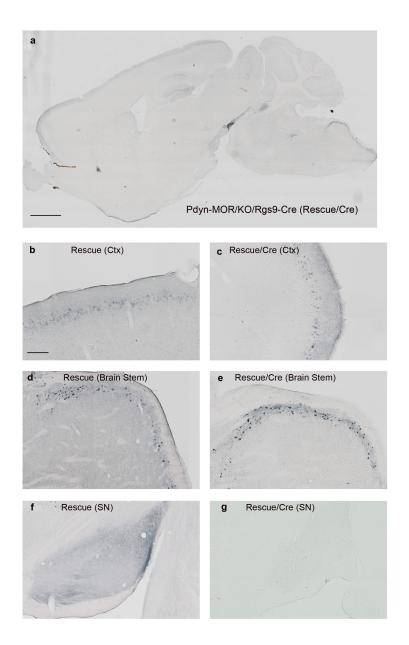


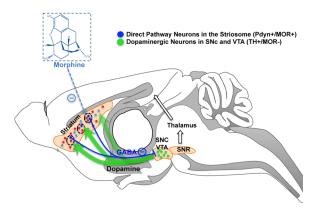



Supplementary Figure S3. Immunohistochemical staining of MOR in adult *WT*, *MOR-KO* and *Rescue* mice. (a) *WT*; (b) *MOR-KO*; and (c) *Rescue* mice. The arrows show the expression of MOR in the cortex and brain stem. Ctx, cerebral cortex; Str, striatum; Tha, thalamus; Mid, midbrain, SN, substantia nigra; BS, brain stem. Scare bar = 1 mm.




Supplementary Figure S4. Western blot analysis of expression of striatal MOR in *Rescue* mice. (a) Western blot performed on brain lysates isolated from *Rescue*, *MOR-KO* and WT control mice. (b) Quantification of relative MOR expression in the striatum. MOR levels were normalized to those observed in the WT mice $(H_{(2)}=32.143, p < 0.001, Non-parametric one-way ANOVA on ranking; n=4, WT; n=3,$ *MOR-KO*and n=6,*Rescue* $). Values are mean <math>\pm$ SEM. Asterisks indicate p < 0.05.


Supplementary Figure S5. *Pdyn-MOR* mice and *Rescue* mice do not exhibit significant deficits in body weight or locomotor behaviors. (a) The body weights of the *WT*, *Pdyn-MOR*, *MOR-KO* and *Rescue* mice are not significantly different ($F_{(3, 44)}=1.864$, p=0.1497, ANOVA, p=12 for genotypes). (b and c) Locomotor activities in the open field test were obtained for adult *WT*, *Pdyn-MOR*, *MOR-KO* and *Rescue* mice (p=1.864) mice (p=1.864). No significant differences were observed in (b floorplane distance (p=1.864) mice (p=1.864) mice (p=1.864). Polynomial distance (p=1.864) mice and p=1.864, p


Supplementary Figure S6 Morphine rewarding effect is rescued by *Pdyn-BAC*-driven expression of the MOR. (a) An independent cohort of mice are used to show that the CPP deficit in the *MOR-KO* mice is restored to the WT level in the *Rescue* mice. (genotype x $F_{(3, 41)}$ =3.887, p = 0.0156, genotype x treatment interaction, two way ANOVA; n=7, WT+morphine group; n=6 in all other groups). (b) The *Rgs9-Cre* transgene alone has no significant deficits in CPP ($F_{(4,71)}$ =5,338, p = 0.0008; genotype x treatment interaction, two way ANOVA, n=7-9 per group). The *WT*, *MOR-KO*, and *Rescue/Cre* mice are the same group of littermate mice as those shown in **Fig. 5b**. Values are mean \pm SEM. Triple asterisk indicates p < 0.001.

Supplementary Figure S7. Naloxone-precipitated morphine withdrawal syndrome is not significantly restored by Pdyn-BAC driven expression of MOR in the striatal direct-pathway MSN subpopulations. (a) tremor; (b) wet dog shakes; (c) teeth chattering; (d) sniffing; (e) ptosis; (f) jumping and (g) diarrhea. Results are expressed as means \pm SEM. Triple asterisks indicate p < 0.001 and single asterisk indicates p < 0.05.

Supplementary Figure S8. Immunohistochemistry staining of MOR in *Rescue/Cre* and *Rescue* mice. (a). A low magnification image of *Rescue/Cre* mice showed the striatal MOR expression is abolished. (b-g) Higher magnificent images to compare MOR expression in *Rescue* mice (b,d,f) and *Rescue/Cre* mice (c,e,g) in the cortex (b,c), the brain stem (d,e) and substantia nigra (f,g). The result showed *Rgs9-Cre* can selectively remove in *Rescue/Cre mice* the expression of MOR in the striatal-direct pathway MSNs and their axonal terminals in SNc, but did not alter MOR expression in the cortex or brain stem compared to *Rescue* mice.

Supplementary Figure S9. The role of striatal direct-pathway MSNs in the striosome and NAc in regulating striatal dopamine release in our *Rescue* mice. MOR is selectively expressed in a subpopulation of striatal direct-pathway MSNs (black dotted circle) located in the striosome and NAc, which form monosynaptic inputs to the DA neurons in VTA and SNc. Opioids (*e.g.* morphine) binding to MOR on this direct-pathway MSN subpopulation results in the restoration of striatal dopamine release and opiate-driven reward and reinforcement behaviors in the *Rescue* mice.

Supplementary Table S1: Oligonucleotide primers used in the study.

Gene	Primer name	Sequence (5'-3')
Pdyn-MOR	Pdyn-MOR_F	AGTCCTTGGCCTTGACTCCTAGGTTCT
transgene	Pdyn-MOR_R	GTCAGTTTCTTACAAGGACAAGCCC
mGAPDH	mGAPDH_F	TGTGTCCGTCGTGGATCTGA
	mGAPDH_R	CCTGCTTCACCACCTTCTTGA
	mGAPDH_P	(FAM)CCGCCTGGAGAAACCTGCCAAGTATG(TAMRA)
MOR (#1)	MOR(#1)_F	CCTGGAACCCGAACACTCTT
	MOR(#1)_R	GCTAAGGGGTCAGAGCAGTC
MOR (#2)	MOR(#2)_F	CACGTTGATGGCAACCAGTC
	MOR(#2)_R	CGTGCTAGTGGCTAAGGCAT
ß-Actin	ACT-B_F	ATGCTCCCGGGCTGTAT
	ACT-B_R	CATAGGAGTCCTTCTGACCCATTC
Drd1	Drd1_F	GGCCTCTTCCTGGTCAATC
	Drd1_R	GAGCGTAGTCTCCCAGATCG
Drd2	Drd2_F	TGAACAGGCGGAGAATGG
	Drd2_R	CTGGTGCTTGACAGCATCTC
Darp-32	Darpp-32_F	TCCTCCTTCCCCTACCAGTG
	Darpp-32_R	TCCTCCTTCCCCTACCAGTG
Pdyn	Pdyn_F	CATCCTGAATCCTCACTGCACA
	Pdyn_R	CTTCTGAATCTTGGATCGGCCA